

Introduction

- These slides were presented to the Mars Exploration Rovers (MER) Landing Site Workshop, 10/18/01
- Emphasis is on results of slope analysis for candidate MER landing sites
- More detailed description of methodology and slope results for Mars Pathfinder site are presented in abstract, online at http://wwwflag.wr.usgs.gov/USGSFlag/Space/ Isprs/index.htm

(Click "Meetings" and follow the links to 2001 workshop abstracts)

Thanks to E. Howington-Kraus, T. Hare, B. Archinal!

Preview of Conclusions

Of sites studied NONE meet MER engineering requirement of 99th %ile slope ≤ 15° at 5 m

Preferred Estimates

SiteSlopeMelas38.2°Gusev32.0°Isidis27.0°Eos37.6°MPF site20.4°

 This is not a "squeaker". Sites do not meet criterion relaxed to permit the Mars Pathfinder Ares Tiu site.

Overview of Methodology

- Rely on MOC-NA images
 - 2x2 summation, ~3 m resolution
- Stereoanalysis
 - Horizontal resolution ≥3 pixels (10 m)
 - Vertical precision ~2m w/high confidence
- Photoclinometry
 - Horizontal resolution ≥1 pixel
 - Model-dependent; calibrate amplitude to stereo to improve confidence
 - Subject to artifacts due to albedo variations
- Usually sample slightly different areas

Develop Analysis Tools

- We use commercial photogrammetric workstation (LH Systems SOCET SET) combined with ISIS
- Includes "generic pushbroom scanner" sensor model that can describe MOC
 - Adjustment capability limited
- Wrote software to ingest/setup images
- Also use Kirk's 2D photoclinometry and slope analysis software

Identify MOC-NA Stereopairs

- Manual search
 - MSSS press releases -> past LS's
 - MER LS website -> some images for MER
- Automated search
 - Sift MOC cumulative index
 - Look for overlaps (allow for pointing errors)
 - Require compatible illumination
 - Validate image quality & overlap by inspection
 - Found good pairs for 4 sites
 - Also Gale crater but overlap ≤500 m wide

MER Landing Site Stereopairs

Isidis Planitia

E02-01301/E02-02016

Characterization of the Sites

AKA "Why Randy is not a geologist..."

Control Images

- Do least-squares adjustment in SOCET
 - Position/velocity offsets in 3 axes
 - Rotation offset/vel/accn in 3 angles
 - Does NOT handle high-frequency "wiggles"—have proposed to develop adjustment s/w that does
- Constrain tiepoints to elevations interpolated from MOLA (USGS 500m grid for each site)
- Did not attempt absolute horizontal control
 - Would require ties to MOLA via intermediate resolution images
 - Not necessary for roughnness analysis
 - Horizontal positions OK to few x 100 m

Collect and edit DEM Data

- Collect by automatching, edit w/stereo display
- High-frequency s/c pointing oscillations cause serious problems for DEM collection & use
 - Periods 0.25–1 s, amplitudes ≤50 uRad
 - Also seen in SPICE CK but aliased to ≥4 s
 - Cross-track oscillations mimic stereo parallax, cause DEM to undulate (10s of m amplitude)
 - Digitally filter DEMs to suppress undulations
 - Along-track oscillations cause matching image lines to wander in and out of alignment.
 - Stereo matcher "loses lock" and fails
 - Collect in sections, adjusting for offset, then edit together

Melas: E02-00270/E05-01626

Gusev: E02-00665/E02-01453

Isidis: E02-01301/E02-02016

Eos: E02-02855/E04-01275

Characterize Surface Roughness

- Direct calculation of slopes
 - Adirectional (gradient) or bidirectional (e.g., E-W)
 - Gives shape of entire slope distribution
 - Distributions are long-tailed: extreme slopes are more common than RMS slope might suggest
 - Limited to single horizontal baseline at a time
- Fourier transform techniques
 - Limited to bidirectional slope
 - Gives RMS slope only, not distribution
 - Quickly gives variation with baseline
 - Are slope-producing features adequately resolved?

Example: Bidirectional Slope Distributions

Example: Adirectional Slope Distributions

Example: Slope vs. Baseline

Melas: Slope vs. Baseline

Stereo fails to resolve dunes

Photoclinometry resolves dunes, gives best slope estimates

Gusev: Slope vs. Baseline

Stereo partly resolves main roughness elements

Photoclinometry resolves these features better

Long-base slope estimates are compatible, so photoclinometry results preferred

"Outside crater" is more typical

Isidis: Slope vs. Baseline

Stereo, photoclinometry both resolve roughness elements

Photoclinometry slopes too high (albedo-related artifacts, sampling effect)

Stereo results preferred

Eos: Slope vs. Baseline

Stereo resolves main roughness elements

Photoclinometry confirms no un-resolved features

Photoclinometry slopes less due to area sampled (away from major ridge)

Stereo results preferred

Summary of Statistics

Site Melas Melas	How St PC	Base 10 m 3 m	RMS <u>Bdir</u> 2.4° 13.2°	99% <u>Adir</u> 12.6° 41.4°	99% <u>@ 5 m</u> 12.6° 38.2°
Gusev-crater	St	10 m	2.8°	16.3°	17.5°
Gusev-crater	PC	3 m	4.2°	15.3°	15.0°
Gusev	St	10 m	5.6°	24.9°	26.6°
Gusev	PC	<mark>3 m</mark>	9.4°	32.3°	<mark>32.0°</mark>
Isidis-N	St	10 m	4.7°	25.6°	27.0°
Isidis-N	PC	3 m	5.7°	22.3°	21.9°
Isidis-S	St	10 m	4.1°	20.1°	22.0°
Isidis-S	PC	3 m	8.5°	31.2°	30.8°
Eos	St	10 m	6.3°	34.4°	37.6°
Eos	PC	3 m	5.8°	23.5°	23.0°

Challenges #6 and #7

- Complete characterization of sites
 - Stereoanalysis of additional sites (and other samples of these sites) as more MOC stereopairs are acquired
 - Develop control to remove undulations
 - Photoclinometry without use of stereo DEM to constrain amplitude (haze estimates)
- Develop rationale for site selection if all sites are too rough for engineering safety criterion